CD28 costimulation is required for the expression of T-cell-dependent cell-mediated immunity against blood-stage Plasmodium chabaudi malaria parasites.

نویسندگان

  • Thomas Rummel
  • Joan Batchelder
  • Patrick Flaherty
  • GayeLyn LaFleur
  • Payal Nanavati
  • James M Burns
  • William P Weidanz
چکیده

Mice suppress the parasitemia of acute blood-stage Plasmodium chabaudi malaria by an antibody- or T-cell-dependent cell-mediated mechanism of immunity (AMI and CMI, respectively) or by both mechanisms. To determine whether CD28 costimulation is required for expression of these polar immune responses, we first compared the time courses of P. chabaudi malaria in CD28-deficient (CD28(-/-)) and CD28-intact (CD28(+/+)) mice. Acute infections in both knockout (KO) and control mice followed similar time courses, with the period of descending parasitemia being prolonged approximately 2 weeks in KO mice followed by intermittent low-grade chronic parasitemia. Infected CD28(-/-) mice produced primarily the immunoglobulin M antibody, which upon passive transfer provided partial protection against P. chabaudi challenge, suggesting that the elimination of blood-stage parasites by CD28(-/-) mice was achieved by AMI. To determine whether CD28(-/-) costimulation is required for the expression of CMI against the parasite, we compared the time courses of parasitemia in B-cell-deficient double-KO (J(H)(-/-) x CD28(-/-)) mice and control (J(H)(-/-) x CD28(+/+)) mice. Whereas control mice suppressed parasitemia to subpatent levels within approximately 2 weeks postinoculation, double-KO mice developed high levels of parasitemia of long-lasting duration. Although not required for the suppression of acute P. chabaudi parasitemia by AMI, CD28 costimulation is essential for the elimination of blood-stage parasites by CMI.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of CD28 in polyclonal and specific T and B cell responses required for protection against blood stage malaria.

The role of B7/CD28 costimulatory pathway in the polyclonal and specific lymphocyte activation induced by blood stages of Plasmodium chabaudi AS was investigated in CD28 gene knockout (CD28(-/-)) and C57BL/6 (CD28(+/+)) mice. Analysis of the spleen during the acute infection revealed a similar increase in T and B cell populations in both groups of mice. Moreover, CD28(-/-) mice were able to dev...

متن کامل

Gammadelta T cells but not NK cells are essential for cell-mediated immunity against Plasmodium chabaudi malaria.

Blood-stage Plasmodium chabaudi infections are suppressed by antibody-mediated immunity and/or cell-mediated immunity (CMI). To determine the contributions of NK cells and γδ T cells to protective immunity, C57BL/6 (wild-type [WT]) mice and B-cell-deficient (J(H(-/-))) mice were infected with P. chabaudi and depleted of NK cells or γδ T cells with monoclonal antibody. The time courses of parasi...

متن کامل

Blood-stage immunity to Plasmodium chabaudi malaria following chemoprophylaxis and sporozoite immunization

Protection against malaria in humans can be achieved by repeated exposure to infected mosquito bites during prophylactic chloroquine treatment (chemoprophylaxis and sporozoites (CPS)). We established a new mouse model of CPS immunization to investigate the stage and strain-specificity of malaria immunity. Immunization with Plasmodium chabaudi by mosquito bite under chloroquine cover does not ge...

متن کامل

Mixed strain infections and strain-specific protective immunity in the rodent malaria parasite Plasmodium chabaudi chabaudi in mice.

Important to malaria vaccine design is the phenomenon of "strain-specific" immunity. Using an accurate and sensitive assay of parasite genotype, real-time quantitative PCR, we have investigated protective immunity against mixed infections of genetically distinct cloned "strains" of the rodent malaria parasite Plasmodium chabaudi chabaudi in mice. Four strains of P. c. chabaudi, AS, AJ, AQ, and ...

متن کامل

Protection against Plasmodium chabaudi malaria induced by immunization with apical membrane antigen 1 and merozoite surface protein 1 in the absence of gamma interferon or interleukin-4.

Strategies to optimize formulations of multisubunit malaria vaccines require a basic knowledge of underlying protective immune mechanisms induced by each vaccine component. In the present study, we evaluated the contribution of antibody-mediated and cell-mediated immune mechanisms to the protection induced by immunization with two blood-stage malaria vaccine candidate antigens, apical membrane ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Infection and immunity

دوره 72 10  شماره 

صفحات  -

تاریخ انتشار 2004